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Text S1. Variance Estimate Obtained Using First-Order Differencing

Let’s consider a n-record of discharge values, ¥ = [91 72 ... Un]'. If the discharge record is

subject to random errors, the entries of this vector may be written as follows

y=H{t)+e, e~N,(0 ), (1)

where #(t) is the data generating process of the actual streamflow at time ¢ > 0 and the n x 1
vector of errors, € = [€; € ... €,]', consists of independent variates with zero-mean and
variance, agt, for all t € N,. If the errors are independent and identically distributed random
variables with zero-mean and nonconstant variance, then we can resort to the nonparametric
estimator of Vrugt et al. (2005) to estimate o2 from the discharge record. This estimator
belongs to the class of difference-based variance estimation methods (Hall et al., 1990) and
differences the discharge time series, y, k consecutive times to yield a local estimate, 52, of the
error variance

9 26\ 7 k2

5 :<k> N (2)

al

where (2) = 9 o) is the binomial coefficient and 7; is the t** entry of the n-vector of discharge
values, y. If k = 1, the difference operator, A*(7;), can be written as
’ o~ o~
Y2 — U
Ys — Yo
AW =" —U1=%Ts— s (3)
N gjn - gnfl

Substituting y; with h; + €, (Eq. 1),

(

(ho + €) — (h1 + €1)
(hg + 63) — (hg + 62>
Al () = (ha + €4) — (hs + €3) (4)

\ (hn + En) - (h'n—l + En—l)



If the time series is smooth enough, h; ~ h;_1,

(%"‘52) - (%"‘51) =€ — €1
%+€3> - %+ €2) = €3 — €2
Al(y) = (M+64)—%+63>:64—63 (5)

\(%—i_ Gn) - M+ 6n—l) =€p — €n—1

Finally,
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€3 — €3€2 + 565
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€1 — €4€3 1+ 5€3 (6)

N N D=

\%ei €En€n—1 + 56%_1
given that (?)71 =1 and (A (ﬂt))z equals
(
(€2 — €1)? = €2 — 26961 + €3
, (€3 — €2)% = €2 — €369 + €3
(A" (@) =< (es — €3)% = €2 — 2e4¢3 + €2 (7)

2 _ 2 2
(€ — €n1)* =€, — 26,61 + €54

In case of homoscedastic errors, the variance estimate is the average of all entries of the vector
defined in Eq. 6,

~ 1 1 1
02:71—1 <§e%+6§+e§+...+ei1—1-56%—(6261+6362+...+6n6n_1)>. (8)

The true sample variance, s2, is

2 _ Z?:l (€ — 5)2 _ Z?ﬂ Ef

S .
n—1 n—1

Thus, the approximation error amounts to

1 1 1
2 52 = — <§e? + 56? + (261 + €360 + ... + etet_l)) . (10)
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Text S2. Alternative Implementation of the Nonparametric Estimator

If we group the coefficients of the k*-order difference operator in a (k + 1)-vector, d, then we
yield, d = [1 —3 3 —1]T, for k = 3. If we divide each entry of d by the Euclidean norm,
E(d) = vd'd, of this so-called difference sequence

4, = d;/ E(d) (11)

then the normalized difference sequence, d' = [d} dy dy ... dj,]", satisfies the following two
conditions (Hall et al., 1990)

k+1 k+1

> di=0 and ) dP=1 (12)
i=1 =1

and the hourly discharge error variances may be written without the difference operator, AF(-),

in Equation (3) (of the main manuscript) as follows (Hall et al., 1990; Zhou et al., 2015)

n—k—1 , k+1
5= (Zd’ymh> , (13)

where 9, 1, is the (i + 7)™ element of the hourly discharge record, y,,.

The above expression returns an estimate of the error variance for the entire discharge record.
This will negate characterization of error heteroscedasticity. A simple solution is to compute

local estimates, 7, of the hourly error variance

k+1 2
Uh - (Z d yl+]h> ) (14)

and subsequently investigate the relationship between 57 and streamflow magnitude. Indeed,

if we embed the normalized difference sequence d’ into a (n — k) x n matrix D as follows

(& d, dy ' 0 e o0 ]
0 d, d dy - dp, 0 - 0
D-|: : - L : | (15)
0 -0 d d d - d, 0
0 0 & &y d - d,, ]

then the (n — k) x 1 vector of hourly discharge error variances, 07 (mm?/d?), can be written

as the element-wise product, ®, of the matrix-vector product, Dy, as follows

o; = Dy, © Dy, (16)
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The Schur product simply squares each element of the (n — k) x 1 vector, Dy, to yield the
(n— k) x 1 vector of error variance estimates. The corresponding discharge values, 7, (mm/d),

may be computed using

i = Wy, (17)
where the (n — k) x n weight matrix W is of the form of Equation (15) except with each entry
of d replaced by weights, w = 1/(k + 1). A scatter plot of y;, and &}, will now reveal the the

nature of the random errors of the discharge record.
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Text S3. Generation of Simulated and Corrupted Streamflow Time Series

In the first case study, we focus our attention on five watersheds with contrasting hydrologic
regimes according to the catchment classification scheme of Brunner et al. (2020). This includes
the (i) Leaf River near Collins, MS (strong winter regime), (ii) Cowhouse Creek at Pidcoke, TX
(intermittent regime), (iii) Potecasi Creek near Union, NC (weak winter regime), (iv) South
Fork Shoshone River near Valley, WY (melt regime) and (v) Nehalem River near Foss, OR

(New Year’s regime).

For each of the five selected CAMELS watersheds, we simulate a multi-year record, y, =
[Y1h Yon - -+ Ynn ]T, of hourly discharge by evaluating the Sacramento soil moisture accounting
(SAC-SMA) model with calibrated parameter values using measured hourly rainfall rates from
NLDAS (Gauch et al., 2020) and hourly estimates of potential evapotranspiration obtained
from the formula of Oudin et al. (2005). We use the SAC-SMA model implementation described
in Clark et al. (2008) and simulate hourly discharges using a second-order mass-conservative
numerical method with adaptive time stepping. Absolute and relative tolerances were fixed
at 1073. This promotes numerical stability and continuity and guarantees that y, is without

numerical artifacts (Kavetski & Clark, 2010; Clark & Kavetski, 2010; Schoups et al., 2010).

We corrupt the simulated discharge record of each CAMELS watershed with a time series, €*,

of uncorrelated normal variates
V.=y,+ €, € ~N,(0X), (18)
using the n x n covariance matrix, 3., with error variances, o2, on the main diagonal equal to
o = (aym + fmw)?, (19)

where my =2 31" | yy, (mm/d) is the arithmetic mean of the SAC-SMA simulated hourly dis-
charge record, «, 8 > 0 are non-negative dimensionless coefficients that determine the nature
and magnitude of the errors and t = (1,2,...,n). The use of the mean simulated discharge
in the intercept, fmy, of the error function of Equation (19) warrants the application of a
common [ value to catchments with widely different flow magnitudes. For a = 0, the n-vector
of errors will have a constant variance and for o > 0 the magnitude of the errors will increase

with simulated discharge.



Text S4. Experimental Data

We illustrate our method by application to catchments from the Catchment Attributes and
MEteorology for Large-sample Studies (CAMELS) data set (Newman et al., 2015; Addor et al.,
2017a). The CAMELS data set provides meteorological data at a daily time step from three
different sources including Daymet, Maurer, and NLDAS and daily streamflow time series
from the United States Geological Survey (USGS) for 671 U.S. catchments (Newman et al.,
2015). This data set was further extended in Addor et al. (2017a) by the addition of catchment
attributes divided into six main classes: topography, climate, streamflow, land cover, soil,
and geology. In this paper, the analysis was conducted using daily streamflow time series
from the entire period available, which for most catchments correspond to the period from 01
October 1980 to 30 September 2014 (34 years). Discharge values were converted from cubic
feet per second (cfs) to millimeters per day (mm/d) by using the catchment area from GAGES
IT (Falcone, 2011), available in the CAMELS data set. We only included in our analysis
catchments without any missing streamflow data within the period available in the CAMELS
data set, since the proposed replicate generation procedure in its current form (described in
section 2.3) requires a complete time series. This first prerequisite leaves us with 621 out of

the 671 catchments.

The method of Vrugt et al. (2005) used in this paper to estimate random errors (described
in section 2.1) requires streamflow data at a high temporal resolution, such that the sampling
frequency is high compared to the typical time scale of the streamflow variation. Preliminary
analysis conducted using synthetic daily discharge time series corrupted with different levels of
errors revealed that a daily time step can be too coarse to provide an accurate estimation of
the error, especially for low levels of errors (results not shown). Therefore, for the estimation of
random errors in discharge records we resort to the hourly streamflow time series made available
by Gauch et al. (2020). The data set of Gauch et al. (2020) contains hourly time series for a total
of 516 CAMELS catchments, starting as early as 1956 to 2007 and extend until May 2020, date
at which the data was retrieved from the USGS Water Information System. The proportion of
missing data in the hourly time series varies between 0 and 60%, with a median value of 8%.
After discarding these missing data, we still have left more than 10 years of (nonconsecutive)
hourly data for each catchment (median of 28 years), which was judged enough to infer the

error model of each watershed.

We need to make two considerations about the use of the hourly time series provided by Gauch
et al. (2020). First, the data set of Gauch et al. (2020) presents streamflow values in millimeters

per hour (mm/h), which was converted from cfs using catchment area as published by the
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USGS. To make them comparable with the daily time series, we rescaled each hourly time
series using the catchment area from GAGES II. Second, the hourly time series provided by
Gauch et al. (2020) represent averages of instantaneous streamflow values estimated from stage
measurements taken at sub-daily intervals. These instantaneous measurements are currently
made by USGS at 15-minute intervals in most gauges, but measurement resolution can vary
from 5 to 60 minutes. In some gauges, stage measurements are recorded at variable time
intervals. In addition, measurement resolution has varied over the years, being most recent
measurements recorded at a higher frequency. For simplicity, we assumed that the hourly
discharge data correspond to instantaneous values for all gauges and during the entire 1980-

2014 period analyzed here.

We only considered catchments without any missing daily streamflow value, as mentioned
previously, and for which the corresponding hourly time series were also available. These two
criteria combined resulted in a total of 504 catchments being included in our analysis. We
follow the functional classification of Brunner et al. (2020) and split the 504 catchments into
the five proposed regime classes: intermittent regime (122 catchments); strong winter regime
(176 catchments); weak winter regime (108 catchments); melt regime (44 catchments); and
New Year’s regime (54 catchments). One catchment of each regime is selected to illustrate our
findings, as follows: intermittent regime — Cowhouse Creek at Pidcoke, TX (USGS 08101000);
strong winter regime — Leaf River near Collins, MS (USGS 02472000); weak winter regime —
Potecasi Creek near Union, NC (USGS 02053200); melt regime — South Fork Shoshone River
near Valley, WY (USGS 06280300); and New Year’s regime — Nehalem River near Foss, OR
(USGS 14301000).



Text S5. Derivation of the Daily Variance Estimate

The daily discharge is computed as the average of the u = 24 hourly discharge values. Therefore,
we resort to the variance of the sample mean to estimate the variance of the daily discharge.
Under the assumption that the u measured values y;, where i = (1,2,...,u), are identically

distributed and measured with no error, the variance of the mean, g, can be expressed as follows
1 u
T2 @;h]
U “
=1

gih]
i=1

Var [y] = Var

[\

Q

Sl |

s%, (20)

1.2

where the approximation sign indicates that the quantity :s°is an estimate of the true variance

2

of the mean, since we use in its computation the sample variance, s*, instead of the true

(unknown) variance, o?.

Now relaxing the assumption that the hourly discharge values are measured with no error, we
can estimate the variance of the mean as follows

1 u

u Z(%h + €in)

i=1
u

Z(yih + €n)

=1

Var [y] = Var

1
= ?Var s (21)
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where ¢;, denotes the error associated with the hourly discharge value y;,. If y;, and €, are

mutually independent, the combined variance is the sum of individual variances,

u
2>
i=1

:%[02+02+...+02}+

= 1 [ua2] + %Zafh
i=1

u
E €ih

i=1
1

1 1
Var [y] = ) Var + = Var

u2

u
1 2 1 2
=—0’+—5 > oh
u U= “
=1

u
1 2 1 2
—st 5 ) sh
u us <
i=1
u

11 U T
Eu—lz(yih_azyjh) +§Zsfhv (22)
j=1 i=1

i=1

Q

Q

where s% denotes the variance of the u = 24 hourly discharge values. This concludes our

derivation.

Note the similarity between Eq. 22 and Eq. 7 of Raftery et al. (2005). Indeed, our equation
would simplify to Eq. 7 of Raftery et al. (2005) if (i) each of the u = 24 hourly discharge values
were considered to be representative of the daily discharge (instead of the daily discharge being
computed as the average of the u = 24 hourly discharge values), and (ii) the variance of the
u = 24 hourly discharge values was constant. Under the first condition, the term % would be
removed from Eq. 22, and, if the second condition were true, the second term of Eq. 22 would

further reduce to s?.



Text S6. Autocorrelation

To induce autocorrelation between the n entries of the perturbation time series, we revise the
covariance matrix, ¥, to a covariance matrix of the perturbations, 3,, written as a product
of the n x n correlation matrix of an AR(k) process, Ry, and the n x n diagonal matrix of the
daily error variances as follows

3, = Ry diag(c?). (23)

The main diagonal elements of 3, list the variances of the discharge errors, € = [€1 ... €,]

Y

and Ry may be written as (Box et al., 2015)

1 r(1) r(2) r(n—1)

r(1) 1 r(1) r(n—2)
Ry=| r2 @) 1 r(n—3) (24)

| r(n—1) r(n—2) r(n—=23) --- I
The entries of Ry can be derived from the sample autocorrelation function of the discharge
record, y = [§1 U2 ... Un]'. The sample autocorrelation, p;(7), for two streamflow obser-
vations, y; and y;, a distance (time), 7 = |i — j|, apart may be computed using (Box et al.,
2015)

po(r) = COV@@:@VJ‘] _ ?\g(T) _ n_iT Z?:T-i-l(gi - "iz?)(?jz—r —myg)
Varly;] — 75(0) o i (Ui — my )?
D1 (Ui = my ) (Yier — my)
B Z?:rﬂ(gi - m§>2 7

where my = £ 31" 7, (mm/T) denotes the mean of the n-record of streamflow observations

(25)

and 7 > 0. The values of p;(7) for 7 € (1,1,...,n—1) equal the entries, r(7), of the correlation
matrix, Ry, in Equation (24). Experiments carried out on the CAMELS data set confirmed
(not shown) that the use of a normal quantile (NQ) transform of the discharge data improves
hydrologic characterization. Therefore, prior to computation of the correlation matrix, Ry, the

discharge values are replaced by their respective variates of a standard normal distribution.
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Algorithm S1. MATLAB implementation of the nonparametric error estimator.

function [c,Y_sig,tab] = error_estimation(Y,k,tol,method,m)

Wl hRRRRRR BB LD LT T T Dottt totototo oo ol e e e T oo oo To To To To To To To To To to To 0o 0o To o o o o e T T T o T o o T T T T To To To 1o 0o 0o 0o 0o 0o o o o o e e~ o
%% Function that estimates the error of a time series of data %
%% Requirements 99
%h [1] the underlying data-generating function, h(t), is sufficiently smooth %
%% [2] the sampling interval is high compared to the time-scale of h(t) %
%% [3] the errors exhibit a constant or heteroscedastic variance Yy
Y3 %o
%% SYNOPSIS [c,Y_sig,tab]l] = error_estimation(Y); VAA
YA [c,Y_sig,tab]l] = error_estimation(Y,k,tol,method,m); %%
Dot %o
%% INPUTS %
YAA Y [required]: n x 1 vector with values of measured signal %
%% k [optionall]: difference operator applied k times (default k: 3) %
%h tol [optional]l: value below which estimated errors are discarded %
%% method [optionall: 1 use all data (default method: 2) %%
YAA 2 use average estimates of sigma %%
YA m [optionall: tab window size to left and right (default m: 100) YA
Dot %o
%% OUTPUTS c: vector with slope and intercept Y44
%% Y_sig: n-k x 2 matrix with data versus the error sigma Yy
YAA tab: n-k x 2 matrix with sliding average values of sigma %

B Bl hhh bl Tt tohhhhtottoloto ol tetototololahhethtetototololo oot tetototototo oottt totototo oo el thtototototo ot totototo oo h oo

if nargin < 2, k = 3; end % how many times does one want to difference?
if nargin < 3, tol = 0; end % remove errors smaller than tol

if nargin < 4, method = 2; end % fitting method

if nargin < 5, m = 100; end % window size of moving average

%% Matrix form (Zhou et al., 2015) - see Supporting Information (SI) file

N = numel(Y);

% get d entries

d_pas = pascal(k+1,1); d = d_pas(k+1,1:k+1);

% normalize d entries

d_norm = d./norm(d); % Eq. (11) of the SI

% Note: sum(d_norm) = 0; and sum(d_norm."2) = 1

D = zeros(N-k,N); A D; wghts = 1/(k+1) * omnes(1,k+1);

for i = 1:N-k
D(i,i:i+k) = d_norm; % entries of D (Eq. (15) of the SI)
A(i,i:i+k) wghts; % to get mean discharge

end

% Now we yield sigma2 estimate

sigma2_est = (D*Y(1:N))."2; 7 Eq. (16) of the SI

% Compute mean values of discharge

Y_m = AxY; % Eq. (17) of the SI

%% Estimate slope and intercept
if tol > O
% Remove small errors
idx = sqrt(sigma2_est) > 1e-10; Y_m = Y_m(idx); sigma2_est = sigma2_est (idx);

end

% Prepare return argument - sort first column for moving average in tab
Y_sig = sortrows([ Y_m sqrt(sigma2_est) 1,1);

if method == 1

% Get slope and intercept estimates using all data
¢ = polyfit(Y_m,sqrt(sigma2_est),1); % Eq. (14) (all data)
tab = [];
elseif method == 2
% Now use moving average with window to get average estimates of sigma
tab = [ Y_sig(:,1) sqrt(movmean(Y_sig(:,2).72,[m m])) 1;
tab(end-m+1l:end,:) = []; % discard endpoints
tab(l:m,:) = []; % discard endpoints
idx = find(isnan(tab(:,2))); tab(idx,:) = [1;
% Now fit line to tabular (averaged) data
c = polyfit(tab(:,1),tab(:,2),1); % Eq. (14) (moving window)
end




Algorithm S2. MATLAB implementation of the replicate generation procedure.

function [Yr] = replicate_generation(Y,N,std_Y)
Dt DTl Tt oo ot o T to o T to o T To To T to e T T o T T o To T o T T o T o o T T o T o T o o T 0o e T o T o T T 0o T T o T o T T o T T o T T o

%% Function that generates replicates of time series of data

Dot

%% SYNOPSIS [Yr] = replicate_generation(Y,N,std_Y);

Dot

%% INPUTS

%% Y [required]: n x 1 vector with values of measured signal
%% N [required]: number of replicates

%% std_Y [required]: error standard deviation of measured signal
Dot

%% OUTPUTS Yr: n x N matrix with replicates

Wh Bl hhhhhhtetoto ol hhtstetototololsh st totolotolo ot totototoTola et tetototoloTo ottt totoloTolo sttt %ot o To To lo % % %o %o To To To /o o %o

% How many data points
n = numel(Y);

% Compute empirical probability
% Plotting position can be 'Weibull' or 'Gringorten
ep = empdis (Y, 'Weibull');

% Transformed data, Yt
Yt = norminv (ep);

% Now determine autocorrelation function
[rho]l] = autocorr(Yt,n-1);

% Create correlation matrix from ACF values
R = toeplitz(rho);

% Now compute covariance matrix from std_Y and correlation matrix
C = corr2cov(std_Y, R);

% Initialize storage matrix
Yr = nan(n,N);

% Now create realizations
for ii = 1:N

if ii==
[r,T] = mvnrnd(zeros(n,1),C);
Yr(1:n,ii) =Y + r';

else

Yr(1:n,ii) = Y + mvnrnd(zeros(mn,1),C,[]1,T)"';
end
disp ([num2str(ii) ' of ' num2str(N)])
end

%% Compute the empirical probability
function p = empdis(y,method)

n = length(y);
bp = zeros(m,1);

for i=1:n
bp(i,1) = sum(y(:,1)<=y(i,1));
end

switch method
case 'Gringorten'
p = (bp-0.44)./(n+0.12);
case 'Weibull'
p = bp./(n+1);
end

Wh
hh
Wh
hh
Wh
W
hh
hh
hh
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hh
hh
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Table S1: Summary of the main characteristics of a sample of five watersheds from the CAMELS data base. We list
mean values of rainfall, potential evapotranspiration (PE) and discharge for the measurement period of 1 October 1989
to 30 September 2009 (Addor et al., 2017b).

USGS gauge Regime Area Rainfall PE  Discharge
km? mm/d mm/d mm/d
Leaf River near Collins, MS strong winter 1927  4.16 3.17 1.33
Cowhouse Creek at Pidcoke, TX intermittent 1177  2.40 3.30 0.27
Potecasi Creek near Union, NC weak winter 584  3.33 2.80 0.86
South Fork Shoshone River near Valley, WY melt 794 1.95 2.54 1.18

Nehalem River near Foss, OR New Year’s 1744  5.82 2.84 3.62
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Figure S1: Simulated discharge record of (a) Leaf River near Collins, MS (strong winter regime), (b) Cowhouse Creek
at Pidcoke, TX (intermittent regime), (c) Potecasi Creek near Union, NC (weak winter regime), (d) South Fork Shoshone
River near Valley, WY (melt regime) and (e) Nehalem River near Foss, OR (New Year’s regime).
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Figure S2: Relationship between the error deviations o; and corresponding hourly discharge values obtained using third-order differencing (k = 3) for the ten pseudo
discharge records of the Leaf River near Collins, MS (USGS 02472000), an example of catchment with a strong winter regime. The top and bottom panels correspond to the
homoscedastic and heteroscedastic error cases, respectively, and present scatter plots of the (7, 01) data points for & = 0 and (a) 8 = 0.001, (b) 8 = 0.01, (c) 8 = 0.1, (d)
B =1.0 and (e) 8 = 10 and in the heteroscedastic error case with 8 = 0 and (f) @ = 0.001, (g) & = 0.01, (h) o = 0.05, (i) &« = 0.1 and (j) o = 0.3. Each gray dot signifies a
different data pair. The blue squares portray the moving average of the error deviation computed from a window of 100 data pairs on either side of the data point. The red
line displays the error function of Equation (12) used to corrupt the simulated discharge record. The least squares values of the coefficients & and 3 of the linear regression
model, ay,, + fmy,, which is fitted to the blue squares are listed in each graph.
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Figure S3: Relationship between the error deviations 7 and corresponding hourly discharge values obtained using third-order differencing (k = 3) for the ten pseudo discharge
records of the Cowhouse Creek at Pidcoke, TX (USGS 08101000), an example of catchment with the intermittent regime. The top and bottom panels correspond to the
homoscedastic and heteroscedastic error cases, respectively, and present scatter plots of the (7, 01) data points for & = 0 and (a) 8 = 0.001, (b) 8 = 0.01, (c) 8 = 0.1, (d)
B =1.0 and (e) 8 = 10 and in the heteroscedastic error case with § = 0 and (f) @ = 0.001, (g) o = 0.01, (h) @ = 0.05, (i) « = 0.1 and (j) @ = 0.3. Each gray dot signifies a
different data pair. The blue squares portray the moving average of the error deviation computed from a window of 100 data pairs on either side of the data point. The red
line displays the error function of Equation (12) used to corrupt the simulated discharge record. The least squares values of the coefficients & and 3 of the linear regression
model, ay,, + Bmy,, which is fitted to the blue squares are listed in each graph.

LT -X



8T - X

64:0.000,[3‘:9.8><10*4 :—0000 ﬂ—10><10 2 :0000 3= 1.0x10"" :0002 B—99><10 1 a = 0.004, 5—10><10+1
100 A (E)
= 10!
~
g
E 10 ——
(S
107
1077 ﬁ'r\mw—rrrrmn—rrqu
106 10* 102 10° 10%210°° 10* 1072 10 10%10°° 10°* 1072 10° 10109 10* 1072 10° 10%210°¢ 10°* 1072 10°
L0 & =0.001, 3 = 2.5x107° & =0.010,3=0 & =0.049, 3 = 1.0x1073 4 =0102,3=0 & =0.290, 3 = 1.3><10*2
) () (H) @ ()
10°
T 2
~_ 10
:
= 10—4
S
1076
1078 | AL LU L I | AL LU L IR AL I L LY B AL LU L L LR AL I LU L L LR L
10-3 10! 10! 10-3 10! 10! 103 10! 10! 1073 107! 10! 103 107! 10!
Y (mm/d) ¢ (mm/d) ¢ (mm/d) e (mm/d) Y (mm/d)

Figure S4: Relationship between the error deviations o; and corresponding hourly discharge values obtained using third-order differencing (k = 3) for the ten pseudo
discharge records of the Potecasi Creek near Union, NC (USGS 02053200), an example of catchment with the weak winter regime. The top and bottom panels correspond to
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different data pair. The blue squares portray the moving average of the error deviation computed from a window of 100 data pairs on either side of the data point. The red
line displays the error function of Equation (12) used to corrupt the simulated discharge record. The least squares values of the coefficients & and 3 of the linear regression
model, ay,, + fmy,, which is fitted to the blue squares are listed in each graph.
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Figure S5: Relationship between the error deviations 7 and corresponding hourly discharge values obtained using third-order differencing (k = 3) for the ten pseudo discharge
records of the South Fork Shoshone River near Valley, WY (USGS 06280300), an example of catchment with the melt regime. The top and bottom panels correspond to the
homoscedastic and heteroscedastic error cases, respectively, and present scatter plots of the (7, 01) data points for & = 0 and (a) 8 = 0.001, (b) 8 = 0.01, (c) 8 = 0.1, (d)
B =1.0 and (e) 8 = 10 and in the heteroscedastic error case with 8 = 0 and (f) @ = 0.001, (g) & = 0.01, (h) o = 0.05, (i) &« = 0.1 and (j) o = 0.3. Each gray dot signifies a
different data pair. The blue squares portray the moving average of the error deviation computed from a window of 100 data pairs on either side of the data point. The red
line displays the error function of Equation (12) used to corrupt the simulated discharge record. The least squares values of the coefficients & and 3 of the linear regression
model, ay,, + fmy,, which is fitted to the blue squares are listed in each graph.
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Figure S6: Relationship between the error deviations o; and corresponding hourly discharge values obtained using third-order differencing (k = 3) for the ten pseudo
discharge records of the Nehalem River near Foss, OR (USGS 14301000), an example of catchment with the New Year’s regime. The top and bottom panels correspond to the
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different data pair. The blue squares portray the moving average of the error deviation computed from a window of 100 data pairs on either side of the data point. The red
line displays the error function of Equation (12) used to corrupt the simulated discharge record. The least squares values of the coefficients & and ,5’ of the linear regression
model, a,, + Bmy, , which is fitted to the blue squares are listed in each graph.
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Figure S7: Least squares values of the coefficients & and B of the linear regression model, ay,, + Smy, , for the 1,000
realizations of pseudo discharge records of the Leaf River near Collins, MS (USGS 02472000), an example of catchment
with a strong winter regime. The top and bottom panels correspond to & and 8, respectively, derived from Equations
(16) and (17) for the homoscedastic error case: a = 0 and (a,f) 8 = 0.001, (b,g) 8 = 0.01, (c,h) 8 =0.1, (d,i) 8 = 1.0
and (e,j) 8 = 10. The relative frequencies on the y-axis are normalized to yield a common empirical density between 0
and 1.
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Figure S8: Least squares values of the coefficients & and B of the linear regression model, o@,, + Bmy, , for the
1,000 realizations of pseudo discharge records of the Cowhouse Creek at Pidcoke, TX (USGS 08101000), an example of
catchment with the intermittent regime. The top and bottom panels correspond to & and B, respectively, derived from
Equations (9) and (10) for the homoscedastic error case: o = 0 and (a,f) 8 = 0.001, (b,g) 8 = 0.01, (c,h) 8 = 0.1, (d,i)
B = 1.0 and (e,j) 8 = 10. The relative frequencies on the y-axis are normalized to yield a common empirical density
between 0 and 1.
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Figure S9: Least squares values of the coefficients & and § of the linear regression model, a7, + Bm,, , for the
1,000 realizations of pseudo discharge records of the Potecasi Creek near Union, NC (USGS 02053200), an example of
catchment with the weak winter regime. The top and bottom panels correspond to & and B , respectively, derived from
Equations (9) and (10) for the homoscedastic error case: o = 0 and (a,f) 8 = 0.001, (b,g) 8 = 0.01, (c,h) = 0.1, (d,i)
B = 1.0 and (e,j) 8 = 10. The relative frequencies on the y-axis are normalized to yield a common empirical density
between 0 and 1.
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Figure S10: Least squares values of the coefficients & and 3 of the linear regression model, ag,, + Smy,, for the
1,000 realizations of pseudo discharge records of the South Fork Shoshone River near Valley, WY (USGS 06280300), an
example of catchment with the melt regime. The top and bottom panels correspond to & and B , respectively, derived
from Equations (9) and (10) for the homoscedastic error case: a = 0 and (a,f) 8 = 0.001, (b,g) 8 = 0.01, (c,h) 8 = 0.1,
(d,i) B =1.0 and (e,j) B = 10. The relative frequencies on the y-axis are normalized to yield a common empirical density
between 0 and 1.
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Figure S11: Least squares values of the coefficients & and B of the linear regression model, a¥,,, + Bm, , for the 1,000
realizations of pseudo discharge records of the Nehalem River near Foss, OR (USGS 14301000), an example of catchment
with the New Year’s regime. The top and bottom panels correspond to & and fﬂ respectively, derived from Equations
(9) and (10) for the homoscedastic error case: a = 0 and (a,f) 8 = 0.001, (b,g) 8 = 0.01, (¢,h) 8 = 0.1, (d,i) 8 = 1.0 and
(e,j) B = 10. The relative frequencies on the y-axis are normalized to yield a common empirical density between 0 and 1.
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Figure S12: Least squares values of the coefficients & and B of the linear regression model, a%,,, + Bmy, , for the 1,000
realizations of pseudo discharge records of the Leaf River near Collins, MS (USGS 02472000), an example of catchment
with a strong winter regime. The top and bottom panels correspond to & and B , respectively, derived from Equations
(16) and (17) for the heteroscedastic error case with 8 = 0 and (a,f) « = 0.001, (b,g) « = 0.01, (c,h) o = 0.05, (d,i)
a = 0.1 and (e,j) @ = 0.3. The relative frequencies on the y-axis are normalized to yield a common empirical density
between 0 and 1.
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Figure S13: Least squares values of the coefficients & and B of the linear regression model, ay,, + fmy,, for the
1,000 realizations of pseudo discharge records of the Cowhouse Creek at Pidcoke, TX (USGS 08101000), an example of
catchment with the intermittent regime. The top and bottom panels correspond to & and 8, respectively, derived from
Equations (9) and (10) for the heteroscedastic error case with 8 = 0 and (a,f) o = 0.001, (b,g) @ = 0.01, (c,h) a = 0.05,
(d,i) @ = 0.1 and (e,j) @ = 0.3. The relative frequencies on the y-axis are normalized to yield a common empirical density
between 0 and 1.
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Figure S14: Least squares values of the coefficients & and B of the linear regression model, ay,, + fmy,, for the
1,000 realizations of pseudo discharge records of the Potecasi Creek near Union, NC (USGS 02053200), an example of
catchment with the weak winter regime. The top and bottom panels correspond to & and B, respectively, derived from
Equations (9) and (10) for the heteroscedastic error case with 8 = 0 and (a,f) a = 0.001, (b,g) a = 0.01, (c,h) a = 0.05,
(d,i) @« = 0.1 and (e,j) @ = 0.3. The relative frequencies on the y-axis are normalized to yield a common empirical density
between 0 and 1.
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Figure S15: Least squares values of the coefficients & and § of the linear regression model, oY, + Bmy,, for the
1,000 realizations of pseudo discharge records of the South Fork Shoshone River near Valley, WY (USGS 06280300), an
example of catchment with the melt regime. The top and bottom panels correspond to & and /3 , respectively, derived
from Equations (9) and (10) for the heteroscedastic error case with 8 = 0 and (a,f) o = 0.001, (b,g) a = 0.01, (c,h)
a = 0.05, (d,i) « = 0.1 and (e,j) @ = 0.3. The relative frequencies on the y-axis are normalized to yield a common
empirical density between 0 and 1.
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Figure S16: Least squares values of the coefficients & and B of the linear regression model, a@,,, + Bmy, , for the 1,000
realizations of pseudo discharge records of the Nehalem River near Foss, OR (USGS 14301000), an example of catchment
with the New Year’s regime. The top and bottom panels correspond to & and B , respectively, derived from Equations (9)
and (10) for the heteroscedastic error case with 8 = 0 and (a,f) « = 0.001, (b,g) a = 0.01, (¢,h) @ = 0.05, (d,i) a = 0.1
and (e,j) a = 0.3. The relative frequencies on the y-axis are normalized to yield a common empirical density between 0
and 1.
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Figure S17: Relationship between the error deviations o; and corresponding hourly discharge values for the Cowhouse
Creek at Pidcoke, TX (USGS 08101000), an example of catchment with the intermittent regime: (a) using all data, and
(b) removing from the analysis &;, values smaller than 107'°. Each gray dot signifies a different data pair. The green
squares portray the moving average of the error deviation computed from a window of 100 data pairs on either side of
the data point.
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Figure S18: Relationship between the error deviations ¢: and corresponding hourly discharge values for the Potecasi
Creek near Union, NC (USGS 02053200), an example of catchment with the weak winter regime: (a) using all data, and
(b) removing from the analysis &1, values smaller than 107'°. Each gray dot signifies a different data pair. The yellow
squares portray the moving average of the error deviation computed from a window of 100 data pairs on either side of
the data point.
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Figure S19: Relationship between the error deviations o and corresponding hourly discharge values for the South Fork
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purple squares portray the moving average of the error deviation computed from a window of 100 data pairs on either
side of the data point.
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Figure S21: The hourly discharge error model of the CAMELS data set: (a) dimensionless slope, a, for each catchment;
(b) frequency distribution of the dimensionless slope, a, of the 504 catchments. In panel (a), each color class encompasses
about one sixth of the total number of considered catchments.
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Figure S22: Coefficient of determination (R?) of the hourly error model for the 504 catchments of the CAMELS data
set: (a) spatial distribution, and (b) frequency distribution.
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Figure S23: The daily discharge error model of the CAMELS data set: (a) dimensionless slope, a, for each catchment;
(b) frequency distribution of the dimensionless slope, a, of the 504 catchments. In panel (a), each color class encompasses
about one sixth of the total number of considered catchments.
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Figure S24: Coefficient of determination (R?) of the daily error model for the 504 catchments of the CAMELS data
set: (a) spatial distribution, and (b) frequency distribution.
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Figure S25: Illustration of the streamflow replicates generated using daily streamflow data from the Cowhouse Creek
at Pidcoke, TX (USGS 08101000), an example of catchment with the intermittent regime. (a) 99% confidence intervals
(gray region) of the N = 1,000 replicates of the discharge record for a representative portion of the 34-year data set.
The discharge data are separately indicated with a solid green line. The top panel only visualizes percentiles of the
discharge uncertainty without recourse to the underlying replicates. Therefore, the bottom panel displays a selection of
the replicates for small excerpts of the discharge record with (b) low, (¢) median and (d) high flows, respectively.
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Figure S26: Illustration of the streamflow replicates generated using daily streamflow data from the Potecasi Creek
near Union, NC (USGS 02053200), an example of catchment with the weak winter regime. (a) 99% confidence intervals
(gray region) of the N = 1,000 replicates of the discharge record for a representative portion of the 34-year data set.
The discharge data are separately indicated with a solid yellow line. The top panel only visualizes percentiles of the
discharge uncertainty without recourse to the underlying replicates. Therefore, the bottom panel displays a selection of
the replicates for small excerpts of the discharge record with (b) low, (c¢) median and (d) high flows, respectively.
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Figure S27: Illustration of the streamflow replicates generated using daily streamflow data from the South Fork
Shoshone River near Valley, WY (USGS 06280300), an example of catchment with the melt regime. (a) 99% confidence
intervals (gray region) of the N = 1,000 replicates of the discharge record for a representative portion of the 34-year data
set. The discharge data are separately indicated with a solid purple line. The top panel only visualizes percentiles of the
discharge uncertainty without recourse to the underlying replicates. Therefore, the bottom panel displays a selection of
the replicates for small excerpts of the discharge record with (b) low, (¢) median and (d) high flows, respectively.
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Figure S28: Illustration of the streamflow replicates generated using daily streamflow data from the Nehalem River
near Foss, OR (USGS 14301000), an example of catchment with the New Year’s regime. (a) 99% confidence intervals
(gray region) of the N = 1,000 replicates of the discharge record for a representative portion of the 34-year data set.
The discharge data are separately indicated with a solid pink line. The top panel only visualizes percentiles of the
discharge uncertainty without recourse to the underlying replicates. Therefore, the bottom panel displays a selection of
the replicates for small excerpts of the discharge record with (b) low, (c¢) median and (d) high flows, respectively.



6 — 1
@) (®)
2
.q;) 4 m
° G 05]
= < |
g 2
g
fg X X X x
[9p] X X xxxxxxxxxxx
0 : : 0 : : A
0 20 40 60 0 5 10 15 20
Measured discharge Lag (d)
0.3 - - : : :
(©) Lo
. 0.2
= 0.2}
wn
=
o)
= o1 | 0.1}
0 » 0 %
0.16 0.17 0.18 -10 -5 0 5 10
Mean of absolute differences (mm/d) Volume error (%)

Figure S29: Characteristics of the streamflow replicates for the Cowhouse Creek at Pidcoke, TX (USGS 08101000), an
example of catchment with the intermittent regime. (a) Standard deviation of the N = 1,000 replicates as a function
of discharge. Each gray dot signifies a different data pair. The solid black line signifies the heteroscedastic error model
that was used to create the discharge replicates. (b) The ACF of the replicates (gray lines) and the discharge record
(green crosses). (c) and (d) Frequency distributions of the mean absolute discharge differences and volume error of the
thousand replicates. The green crosses highlight the values computed from the original record.
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Figure S30: Characteristics of the streamflow replicates for the Potecasi Creek near Union, NC (USGS 02053200), an
example of catchment with the weak winter regime. (a) Standard deviation of the N = 1,000 replicates as a function of
discharge. Each gray dot signifies a different data pair. The solid black line signifies the heteroscedastic error model that
was used to create the discharge replicates. (b) The ACF of the replicates (gray lines) and the original record (yellow
crosses). (c) and (d) Frequency distributions of the mean absolute discharge differences and volume error of the thousand

replicates. The yellow crosses highlight the values computed from the original record.
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Figure S31: Characteristics of the streamflow replicates for the South Fork Shoshone River near Valley, WY (USGS
06280300), an example of catchment with the melt regime. (a) Standard deviation of the N = 1,000 replicates as a
function of discharge. Each gray dot signifies a different data pair. The solid black line signifies the heteroscedastic error
model that was used to create the discharge replicates. (b) The ACF of the replicates (gray lines) and the original record
(purple crosses). (c) and (d) Frequency distributions of the mean absolute discharge differences and volume error of the
thousand replicates. The purple crosses highlight the values computed from the original record.
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Figure S32: Characteristics of the streamflow replicates for the Nehalem River near Foss, OR (USGS 14301000), an
example of catchment with the New Year’s regime. (a) Standard deviation of the N = 1,000 replicates as a function
of discharge. Each gray dot signifies a different data pair. The solid black line signifies the heteroscedastic error model
that was used to create the discharge replicates. (b) The ACF of the replicates (gray lines) and the original record (pink
crosses). (c) and (d) Frequency distributions of the mean absolute discharge differences and volume error of the thousand
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replicates. The pink crosses highlight the values computed from the original record.
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Figure S33: Mean of absolute differences of the discharge time series of the CAMELS catchments. Black circles

correspond to catchments for which the value computed from the original record is not inside the sampled distribution,
i.e., the mean of absolute differences of the replicates is consistently lower/higher than the mean of absolute differences

of the original record.
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Figure S34: Illustration of the streamflow replicates using o+q = 0.209:q4 and daily streamflow data from the Cowhouse
Creek at Pidcoke, TX (USGS 08101000), an example of catchment with the intermittent regime. (a) 99% confidence
intervals (gray region) of the N = 1,000 replicates of the discharge record for a representative portion of the 34-year

data set. The discharge data are separately indicated with a solid green line.
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Figure S35: Illustration of the streamflow replicates generated using orq = 0.20y:q and daily streamflow data from the
Leaf River near Collins, MS (USGS 02472000), an example of catchment with a strong winter regime. (a) 99% confidence
intervals (gray region) of the N = 1,000 replicates of the discharge record for a representative portion of the 34-year
data set. The discharge data are separately indicated with a solid blue line.
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Figure S36: Illustration of the streamflow replicates generated using o:a = 0.20y:q and daily streamflow data from
the Potecasi Creek near Union, NC (USGS 02053200), an example of catchment with the weak winter regime. (a) 99%
confidence intervals (gray region) of the N = 1,000 replicates of the discharge record for a representative portion of the
34-year data set. The discharge data are separately indicated with a solid yellow line.
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Figure S37: Illustration of the streamflow replicates generated using orq = 0.20y:q and daily streamflow data from the
South Fork Shoshone River near Valley, WY (USGS 06280300), an example of catchment with the melt regime. (a) 99%
confidence intervals (gray region) of the N = 1,000 replicates of the discharge record for a representative portion of the
34-year data set. The discharge data are separately indicated with a solid purple line.
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Figure S38: Illustration of the streamflow replicates generated using otq = 0.20y:q and daily streamflow data from
the Nehalem River near Foss, OR (USGS 14301000), an example of catchment with the New Year’s regime. (a) 99%
confidence intervals (gray region) of the NV = 1,000 replicates of the discharge record for a representative portion of the
34-year data set. The discharge data are separately indicated with a solid pink line.
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Figure S39: Characteristics of the streamflow replicates for the Cowhouse Creek at Pidcoke, TX (USGS 08101000), an
example of catchment with the intermittent regime. Replicates of the discharge record are generated using o:q = 0.209:q.
(a) Standard deviation of the N = 1,000 replicates as a function of discharge. Each gray dot signifies a different data
pair. The solid black line signifies the heteroscedastic error model that was used to create the discharge replicates. (b)
The ACF of the replicates (gray lines) and the original record (blue crosses). (c) and (d) Frequency distributions of the
mean absolute discharge differences and volume error of the thousand replicates. The blue crosses highlight the values

computed from the original record.
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Figure S40: Characteristics of the streamflow replicates for the Leaf River near Collins, MS (USGS 02472000), an
example of catchment with a strong winter regime. Replicates of the discharge record are generated using o:q = 0.209:q.
(a) Standard deviation of the N = 1,000 replicates as a function of discharge. Each gray dot signifies a different data
pair. The solid black line signifies the heteroscedastic error model that was used to create the discharge replicates. (b)
The ACF of the replicates (gray lines) and the original record (blue crosses). (c) and (d) Frequency distributions of the
mean absolute discharge differences and volume error of the thousand replicates. The blue crosses highlight the values

computed from the original record.
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Figure S41: Characteristics of the streamflow replicates for the Potecasi Creek near Union, NC (USGS 02053200), an
example of catchment with the weak winter regime. Replicates of the discharge record are generated using o:q = 0.209:q.
(a) Standard deviation of the N = 1,000 replicates as a function of discharge. Each gray dot signifies a different data
pair. The solid black line signifies the heteroscedastic error model that was used to create the discharge replicates. (b)
The ACF of the replicates (gray lines) and the original record (blue crosses). (c) and (d) Frequency distributions of the
mean absolute discharge differences and volume error of the thousand replicates. The blue crosses highlight the values

computed from the original record.
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Figure S42: Characteristics of the streamflow replicates for the South Fork Shoshone River near Valley, WY (USGS
06280300), an example of catchment with the melt regime. Replicates of thedischarge record are generated using o =
0.20y:a. (a) Standard deviation of the N = 1,000 replicates as a function of discharge. Each gray dot signifies a different
data pair. The solid black line signifies the heteroscedastic error model that was used to create the discharge replicates.
(b) The ACF of the replicates (gray lines) and the original record (blue crosses). (c) and (d) Frequency distributions
of the mean absolute discharge differences and volume error of the thousand replicates. The blue crosses highlight the

values computed from the original record.
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Figure S43: Characteristics of the streamflow replicates for the Nehalem River near Foss, OR (USGS 14301000), an
example of catchment with the New Year’s regime. Replicates of the discharge record are generated using o:q = 0.209:q.
(a) Standard deviation of the N = 1,000 replicates as a function of discharge. Each gray dot signifies a different data
pair. The solid black line signifies the heteroscedastic error model that was used to create the discharge replicates. (b)
The ACF of the replicates (gray lines) and the original record (blue crosses). (c) and (d) Frequency distributions of the
mean absolute discharge differences and volume error of the thousand replicates. The blue crosses highlight the values

computed from the original record.
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